3.3066 \(\int \frac{1}{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}} x^3} \, dx\)

Optimal. Leaf size=165 \[ \frac{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}} \left (16 a c-15 b^2 d+10 b c \sqrt{\frac{d}{x}}\right )}{12 c^3}-\frac{b \sqrt{d} \left (12 a c-5 b^2 d\right ) \tanh ^{-1}\left (\frac{b d+2 c \sqrt{\frac{d}{x}}}{2 \sqrt{c} \sqrt{d} \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )}{8 c^{7/2}}-\frac{2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{3 c x} \]

[Out]

((16*a*c - 15*b^2*d + 10*b*c*Sqrt[d/x])*Sqrt[a + b*Sqrt[d/x] + c/x])/(12*c^3) - (2*Sqrt[a + b*Sqrt[d/x] + c/x]
)/(3*c*x) - (b*Sqrt[d]*(12*a*c - 5*b^2*d)*ArcTanh[(b*d + 2*c*Sqrt[d/x])/(2*Sqrt[c]*Sqrt[d]*Sqrt[a + b*Sqrt[d/x
] + c/x])])/(8*c^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.22797, antiderivative size = 165, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {1970, 1357, 742, 779, 621, 206} \[ \frac{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}} \left (16 a c-15 b^2 d+10 b c \sqrt{\frac{d}{x}}\right )}{12 c^3}-\frac{b \sqrt{d} \left (12 a c-5 b^2 d\right ) \tanh ^{-1}\left (\frac{b d+2 c \sqrt{\frac{d}{x}}}{2 \sqrt{c} \sqrt{d} \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )}{8 c^{7/2}}-\frac{2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{3 c x} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*Sqrt[d/x] + c/x]*x^3),x]

[Out]

((16*a*c - 15*b^2*d + 10*b*c*Sqrt[d/x])*Sqrt[a + b*Sqrt[d/x] + c/x])/(12*c^3) - (2*Sqrt[a + b*Sqrt[d/x] + c/x]
)/(3*c*x) - (b*Sqrt[d]*(12*a*c - 5*b^2*d)*ArcTanh[(b*d + 2*c*Sqrt[d/x])/(2*Sqrt[c]*Sqrt[d]*Sqrt[a + b*Sqrt[d/x
] + c/x])])/(8*c^(7/2))

Rule 1970

Int[(x_)^(m_.)*((a_) + (b_.)*((d_.)/(x_))^(n_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> -Dist[d^(m + 1), Subst
[Int[(a + b*x^n + (c*x^(2*n))/d^(2*n))^p/x^(m + 2), x], x, d/x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2,
 -2*n] && IntegerQ[2*n] && IntegerQ[m]

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 742

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2
*(m + 2*p + 1) - e*(a*e*(m - 1) + b*d*(p + 1)) + e*(2*c*d - b*e)*(m + p)*x, x]*(a + b*x + c*x^2)^p, x], x] /;
FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0]
 && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, b, c, d, e, m,
p, x]

Rule 779

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x)*(a + b*x + c*x^2)^(p + 1))/(2*c^2*(p + 1)*(2*p + 3
)), x] + Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)), Int[(a
+ b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}} x^3} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{x}{\sqrt{a+b \sqrt{x}+\frac{c x}{d}}} \, dx,x,\frac{d}{x}\right )}{d^2}\\ &=-\frac{2 \operatorname{Subst}\left (\int \frac{x^3}{\sqrt{a+b x+\frac{c x^2}{d}}} \, dx,x,\sqrt{\frac{d}{x}}\right )}{d^2}\\ &=-\frac{2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{3 c x}-\frac{2 \operatorname{Subst}\left (\int \frac{x \left (-2 a-\frac{5 b x}{2}\right )}{\sqrt{a+b x+\frac{c x^2}{d}}} \, dx,x,\sqrt{\frac{d}{x}}\right )}{3 c d}\\ &=\frac{\left (16 a c-5 b \left (3 b d-2 c \sqrt{\frac{d}{x}}\right )\right ) \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{12 c^3}-\frac{2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{3 c x}-\frac{\left (b \left (12 a c-5 b^2 d\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+\frac{c x^2}{d}}} \, dx,x,\sqrt{\frac{d}{x}}\right )}{8 c^3}\\ &=\frac{\left (16 a c-5 b \left (3 b d-2 c \sqrt{\frac{d}{x}}\right )\right ) \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{12 c^3}-\frac{2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{3 c x}-\frac{\left (b \left (12 a c-5 b^2 d\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{4 c}{d}-x^2} \, dx,x,\frac{b+\frac{2 c \sqrt{\frac{d}{x}}}{d}}{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )}{4 c^3}\\ &=\frac{\left (16 a c-5 b \left (3 b d-2 c \sqrt{\frac{d}{x}}\right )\right ) \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{12 c^3}-\frac{2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{3 c x}-\frac{b \sqrt{d} \left (12 a c-5 b^2 d\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \left (b+\frac{2 c \sqrt{\frac{d}{x}}}{d}\right )}{2 \sqrt{c} \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )}{8 c^{7/2}}\\ \end{align*}

Mathematica [F]  time = 0.190929, size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}} x^3} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[1/(Sqrt[a + b*Sqrt[d/x] + c/x]*x^3),x]

[Out]

Integrate[1/(Sqrt[a + b*Sqrt[d/x] + c/x]*x^3), x]

________________________________________________________________________________________

Maple [A]  time = 0.138, size = 267, normalized size = 1.6 \begin{align*}{\frac{1}{24\,x}\sqrt{{\frac{1}{x} \left ( b\sqrt{{\frac{d}{x}}}x+ax+c \right ) }} \left ( 15\,\ln \left ({\frac{1}{\sqrt{x}} \left ( 2\,c+b\sqrt{{\frac{d}{x}}}x+2\,\sqrt{c}\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c} \right ) } \right ) \left ({\frac{d}{x}} \right ) ^{3/2}{x}^{3}{b}^{3}c+20\,{c}^{5/2}\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c}\sqrt{{\frac{d}{x}}}xb-36\,\ln \left ({\frac{1}{\sqrt{x}} \left ( 2\,c+b\sqrt{{\frac{d}{x}}}x+2\,\sqrt{c}\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c} \right ) } \right ) \sqrt{{\frac{d}{x}}}{x}^{2}ab{c}^{2}-16\,\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c}{c}^{7/2}+32\,{c}^{5/2}\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c}xa-30\,{c}^{3/2}\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c}dx{b}^{2} \right ){\frac{1}{\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c}}}{c}^{-{\frac{9}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(a+c/x+b*(d/x)^(1/2))^(1/2),x)

[Out]

1/24*((b*(d/x)^(1/2)*x+a*x+c)/x)^(1/2)*(15*ln((2*c+b*(d/x)^(1/2)*x+2*c^(1/2)*(b*(d/x)^(1/2)*x+a*x+c)^(1/2))/x^
(1/2))*(d/x)^(3/2)*x^3*b^3*c+20*c^(5/2)*(b*(d/x)^(1/2)*x+a*x+c)^(1/2)*(d/x)^(1/2)*x*b-36*ln((2*c+b*(d/x)^(1/2)
*x+2*c^(1/2)*(b*(d/x)^(1/2)*x+a*x+c)^(1/2))/x^(1/2))*(d/x)^(1/2)*x^2*a*b*c^2-16*(b*(d/x)^(1/2)*x+a*x+c)^(1/2)*
c^(7/2)+32*c^(5/2)*(b*(d/x)^(1/2)*x+a*x+c)^(1/2)*x*a-30*c^(3/2)*(b*(d/x)^(1/2)*x+a*x+c)^(1/2)*d*x*b^2)/x/(b*(d
/x)^(1/2)*x+a*x+c)^(1/2)/c^(9/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b \sqrt{\frac{d}{x}} + a + \frac{c}{x}} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+c/x+b*(d/x)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*sqrt(d/x) + a + c/x)*x^3), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+c/x+b*(d/x)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{3} \sqrt{a + b \sqrt{\frac{d}{x}} + \frac{c}{x}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(a+c/x+b*(d/x)**(1/2))**(1/2),x)

[Out]

Integral(1/(x**3*sqrt(a + b*sqrt(d/x) + c/x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b \sqrt{\frac{d}{x}} + a + \frac{c}{x}} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+c/x+b*(d/x)^(1/2))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*sqrt(d/x) + a + c/x)*x^3), x)